Structural Damage Detection Using Modal Strain Energy and Hybrid Multiobjective Optimization
نویسندگان
چکیده
Modal strain energy (MSE) is a sensitive physical property that can be utilized as a damage index in structural health monitoring. Inverse problem solvingbased approaches using single-objective optimization algorithms are also a promising damage identification method. However, the research into the integration of these methods is currently limited; only partial success in the detection of structural damage with high errors has been reported. The majority of previous research was focused on detecting damage in simply supported beams or plain structures. In this study, a novel damage detection approach using hybrid multiobjective optimization algorithms based on MSE is proposed to detect damages in various three-dimensional (3-D) steel structures. Minor damages have little effect on the difference of the modal properties of the structure, and thus such damages with multiple locations in a structure are difficult to detect using traditional damage detection methods based on modal properties. Various minor damage scenarios are created for the 3-D structures to investigate the newly proposed multiobjective approach. The proposed hybrid multiobjective genetic algorithm detects the exact locations and extents of the induced minor damages in the structure. Even though it uses incomplete mode shapes, which do not have any measured information at the damaged element, the proposed approach detects damage well. The robustness of the proposed method is investigated by adding 5% Gaussian random white noise as a ∗To whom correspondence should be addressed. E-mail: obuyuk@ mit.edu. noise effect to mode shapes, which are used in the calculation of MSE.
منابع مشابه
A TWO-STAGE DAMAGE DETECTION METHOD FOR LARGE-SCALE STRUCTURES BY KINETIC AND MODAL STRAIN ENERGIES USING HEURISTIC PARTICLE SWARM OPTIMIZATION
In this study, an approach for damage detection of large-scale structures is developed by employing kinetic and modal strain energies and also Heuristic Particle Swarm Optimization (HPSO) algorithm. Kinetic strain energy is employed to determine the location of structural damages. After determining the suspected damage locations, the severity of damages is obtained based on variations of modal ...
متن کاملEFFICIENCY EVALUATION OF PROPOSED OBJECTIVE FUNCTIONS IN STRUCTURAL DAMAGE DETECTION BASED ON MODAL STRAIN ENERGY AND FLEXIBILITY APPROACHES
Civil infrastructures such as bridges and buildings are prone to damage as a result of natural disasters. To understand damages induced by these events, the structure needs to be monitored. The field of engineering focusing on the process of evaluating the location and the intensity of the damage to the structure is called Structural Health Monitoring (SHM). Early damage prognosis in structures...
متن کاملDamage detection of structures using modal strain energy with Guyan reduction method
The subject of structural health monitoring and damage identification of structures at the earliest possible stage has been a noteworthy topic for researchers in the last years. Modal strain energy (MSE) based index is one of the efficient methods which are commonly used for detecting damage in structures. It is also more effective and economical to employ some methods for reducing the degrees ...
متن کاملStructural Damage Assessment Via Model Updating Using Augmented Grey Wolf Optimization Algorithm (AGWO)
Some civil engineering-based infrastructures are planned for the Structural Health Monitoring (SHM) system based on their importance. Identifiction and detecting damage automatically at the right time are one of the major objectives this system faces. One of the methods to meet this objective is model updating whit use of optimization algorithms in structures.This paper is aimed to evaluate the...
متن کاملModal Strain Energy Based Damage Detection Using Multi-Objective Optimization
Modal strain energy has been reported by researchers as one of the sensitive physical measures that can be used as a damage index in structural health monitoring. Inverse problem-solving based approaches using single-objective optimization algorithms are also one of the promising damage identification methods. However, integration of these potential methods is currently limited with partial suc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comp.-Aided Civil and Infrastruct. Engineering
دوره 30 شماره
صفحات -
تاریخ انتشار 2015